Fixed point theorems for weakly contractive multivalued maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theorems for generalized contractive type multivalued maps

Without using the concept of Hausdorff metric, we prove some results on the existence of fixed points for generalized contractive multivalued maps with respect to u-distance. Consequently, several known fixed point results are either generalized or improved.

متن کامل

Fixed point results for multivalued contractive maps

* Correspondence: [email protected] Department of Mathematics, Faculty of Science For Girls, King Abdulaziz University, P.O. Box 53909, Jeddah 21593, Saudi Arabia Full list of author information is available at the end of the article Abstract Using the concept of u-distance, we prove a fixed point theorem for multivalued contractive maps. We also establish a multivalued version of the Caris...

متن کامل

Fixed point theorems for $alpha$-contractive mappings

In this paper we prove existence the common fixed point with different conditions for $alpha-psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.

متن کامل

Common Fixed-point Theorems for Nonlinear Weakly Contractive Mappings

The Banach contraction principle is one of the pivotal results in the metric fixed-point theory. It is a popular tool for the solution of existence problems in various fields of mathematics. There are several generalizations of the Banach contraction principle in the related literature on the metric fixed-point theory. Ran and Reurings [15] extended the Banach contraction principle in partially...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/s0022-247x(03)00387-1